Master of Applied Science (MASc) in Chemical Engineering - Nanotechnology

The program information below was valid for the winter 2017 term (January 1, 2017 - April 30, 2017). This is the archived version; the most up-to-date program information is available through the current Graduate Studies Academic Calendar.

The Graduate Studies Academic Calendar is updated 3 times per year, at the start of each academic term (January 1, May 1, September 1). Graduate Studies Academic Calendars from previous terms can be found in the archives.

Students are responsible for reviewing the general information and regulations section of the Graduate Studies Academic Calendar.

  • Admit term(s) 
    • Fall
    • Winter
    • Spring
  • Delivery mode 
    • On-campus
  • Program type 
    • Collaborative
    • Master's
    • Research
  • Registration option(s) 
    • Full-time
  • Study option(s) 
  • Minimum requirements 
    • A 75% overall standing in the last two years, or equivalent, in a four-year Honours Bachelor's degree or equivalent.
  • Application materials 
    • Résumé
    • Supplementary information form
    • Transcript(s)
  • References 
    • Number of references:  2
    • Type of references: 

      at least 1 academic. Note: The Department reserves the right to request an additional reference.

  • English language proficiency (ELP) (if applicable)

    Thesis option:

  • Graduate Academic Integrity Module (Graduate AIM)
  • Courses 
    • Students must complete 4 courses, including 2 core CHE courses and 2 Nanotechnology elective courses.
    • The core courses provide the base knowledge and skill set required to prepare students for more specialized courses and to conduct interdisciplinary nanoscale research. The following core CHE courses are required for students with no prior nanotechnology degree from the University of Waterloo:
      • NANO 701 Fundamentals of Nanotechnology (two 0.25 credit NANO 701 modules)
      • NANO 702 Nanotechnology Tools (two 0.25 credit NANO 702 modules)
      • Note: Students who have a Bachelor of Applied Science (BASc) in Nanotechnology Engineering from the University of Waterloo are not required to take NANO 701 or NANO 702. Instead, they may choose 2 courses from the list of Nanotechnology Electives.
    • Core CHE courses:
      • CHE 610 Transport Phenomena
      • CHE 612 Interfacial Phenomena
      • CHE 620 Applied Engineering Mathematics
      • CHE 622 Statistics in Engineering
      • CHE 630 Chemical Reactor Analysis
      • CHE 640 Principles of Polymer Science
      • CHE 660 Principles of Biochemical engineering
      • NANO 701 Fundamentals of Nanotechnology (two 0.25 credit NANO 701 modules)
      • NANO 702 Nanotechnology Tools (two 0.25 credit NANO 702 modules)
    • To meet the Nanotechnology electives requirement, students may take:
      • No more than 1 500 level or held with course.
      • No more than 2 courses taught by supervisor(s).
      • No more than 1 reading course.
    • Nanotechnology elective courses:
      • (a) Micro/nano Instruments and Devices
        • BIOL 642 Current topics in Biotechnology
        • CHEM 724 Chemical Instrumentation
        • CHEM 750 Topic 17 Selected Topics in Physical Chemistry: Surface Science and Nanotechnology
        • CHEM 750TXX Nanostructured Materials and Analysis
        • ME 738 Special Topics in Materials: Materials for NEMS and MEMS
        • ME 760 Special Topics in Thermal Engineering
        • ME 770 Topics in Heat and Fluid Flow: Micro- and Nano- fluidics
        • ME 780 Special Topics in Mechatronics
        • SYDE 682 Advanced MicroElectroMechanical Systems: Principles, Design & Fabrication
        • SYDE 750 Topic 24 Topics in Systems Modelling: Modelling, Simulation and Design of MEMS
      • (b) Nanoelectronics Design and Fabrication
        • CHE 620 Applied Engineering Mathematics
        • CHEM 750 Topic 11 Selected Topics in Physical Chemistry: Bioelectronics
        • CHEM 750 Topic 19 Selected Topics in Physical Chemistry: Carbon Nanotube Electronics
        • ECE 630 Physics and Models of Semiconductor Devices
        • ECE 631 Microelectronic Processing Technology
        • ECE 632 Photovoltaic Energy Conversion
        • ECE 633 Nanoelectronics
        • ECE 634 Organic Electronics
        • ECE 635 Fabrication in the Nanoscale: Principles, Technology, & Applications
        • ECE 636 Advanced Analog Integrated Circuits
        • ECE 637 Digital Integrated Circuits
        • ECE 639 Characteristics & Applications of Amorphous Silicon
        • ECE 672 Optoelectronic Devices
        • ECE 676 Quantum Information Processing Devices
        • ECE 677 Quantum Electronics and Photonics
        • ECE 730 Topic 10 Special Topics in Solid State Devices: Advanced Technology for Semiconductor Processing
        • ECE 730 Topic 11 Special Topics in Solid State Devices: Physics and Modeling of Semiconductor Devices
        • ECE 730 Topic 19 Special Topics in Solid State Devices: Magnetism and Spintronics
        • ECE 730T20 Topics in Solid State Devices: Physics of Nanodevices
        • ECE 730 Topic 26 Special Topics in Solid State Devices: MBE and Quantum Nano Devices
        • ECE 730 Topic 28 Special Topics in Solid State Devices: Physics of Nanoscale Devices
        • ECE 730 Topic 29 Special Topics in Solid State Devices: Computational Nanoelectronics
        • ECE 770T13 Topics in Antenna and Microwave Theory: Quantum Information Devices
        • ECE 770 Topic 18 Special Topics in Antenna and Microwave Theory: Nanoelectronics for QIP
        • ECE 770 Topic 21 Special Topics in Antenna and Microwave Theory: Quantum Optics & Nanophotonics
        • ME 595 Introduction to MEMS Fabrication
        • ME 596 Topics in Nanotechnology: Introduction to Fabrication & Characterization of Nano-structures
        • PHYS 713 Molecular Physics
        • PHYS 731 Solid State Physics 1
        • PHYS 747 Optical Electronics
      • (c) Nano-biosystems
        • BIOL 608 Advanced Molecular Genetics
        • BIOL 614 Bioinformatics Tools and Techniques
        • BIOL 629 Cell Growth and Differentiation
        • BIOL 642 Current Topics in Biotechnology
        • BIOL 670 Photobiology
        • BIOL 678 Current topics in Neurophysiology
        • CHE 562 Advanced Bioprocess Engineering
        • CHE 622 Statistics in Engineering
        • CHE 660 Principles of Biochemical Engineering
        • CHE 661 Advances in Biochemical Engineering
        • CHE 760 Special Topics in Biochemical Engineering
        • CHE 765 Research Topics in Biochemical Engineering
        • CHEM 730 Proteins and Nucleic Acids
        • CHEM 731T02 Physical Biochemistry
        • CHEM 737 Enzymes
        • ECE 730 Topic 25 Special Topics in Solid State Devices: Microfluidic & Nanobiotech Systems
        • PHYS 751 Clinical Applications of Physics in Medicine
        • PHYS 752 Molecular Biophysics
      • (d) Nanomaterials
        • CHE 541 Introduction to Polymer Science and Properties
        • CHE 542 Polymerization and Polymer Properties
        • CHE 610 Theory and Application of Transport Phenomena
        • CHE 612 Interfacial Phenomena
        • CHE 622 Statistics in Engineering
        • CHE 630 Chemical Reactor Analysis
        • CHE 640 Principles of Polymer Science (cross-listed with CHEM 770)
        • CHE 641 Physical Properties of Polymers (cross-listed with CHEM 771)
        • CHE 740 Special Topics in Polymer Science and Engineering
        • CHE 745 Research Topics in Polymer Science and Engineering
        • CHE 750 Special Topics in Materials Science: Thin Film Fabrications & Mechanical Properties
        • CHE 755 Research Topics in Electrochemical Engineering, Interfacial Engineering & Material Science
        • CHEM 710T12 Structure and Function of Supramolecular Materials
        • CHEM 710T15 Advanced Solid State Chemistry: Ion, Electron and Molecular Transport
        • CHEM 710 Topic 17 Selected Topics in Inorganic Chemistry: Nanostructured Materials and Integrative Chemistry
        • CHEM 713 Chemistry of Inorganic Solid State Materials
        • CHEM 720 Topic 14 Selected Topics in Analytical Chemistry: Nanomaterials for Energy Conversion and Clean Environment
        • CHEM 750 Topic 17 Selected Topics in Physical Chemistry: Surface Science and Nanotechnology
        • ME 632 Experimental Methods in Materials Engineering
        • ME 738 Special Topics in Materials: Materials for NEMS and MEMS
        • ME 738 Topics in Materials Science: Nanostructured and Amorphous Materials
        • ME 738 Topic 8 Special Topics in Materials: Introductory and Advanced Nanomechanics
        • PHYS 701 Quantum Mechanics 1
        • PHYS 704 Statistical Physics 1
        • PHYS 706 Electromagnetic Theory
        • PHYS 773 Special Topics
    • Students must achieve a:
      • Minimum cumulative average of 70%.
      • Minimum grade of 65% in each individual non-core course.
      • Minimum grade of 70% in each core course.
      • Note: Probationary students may have specific grade requirements, which will be specified in their admission letter.
    • Each student is responsible for monitoring their own academic records and must immediately notify the Graduate Coordinator of any inadequate grade or average.
    • At least 50% of the final grade in core courses will be determined by a final exam.
  • Link(s) to courses
  • Master's Seminar
    • Over the course of their degree program, full-time students must attend 12 seminars:
      • 8 seminars from the Waterloo Institute for Nanotechnology (WIN)
      • 4 seminars from departments and research institutions where Chemical Engineering faculty members have a membership. The Chemical Engineering seminars are documented in the Events section of the Chemical Engineering Department website.
    • Note: At Chemical Engineering seminars, attendance is documented. At other approved seminars, students complete an attendance form and get it signed by the seminar organizer. Full instructions are available on the Department website.
  • Graduate Studies Seminar
    • The graduate studies seminar helps to develop students’ ability to communicate the results of a research investigation concisely and informatively. Each student must present a seminar about their thesis project at the appropriate Annual Research Seminar held by the Chemical Engineering Department. The seminar is not an oral examination of the thesis.
  • Master’s Thesis
    • Each student must submit a thesis that reports the results of original research and discusses the significance of the work. The thesis must be acceptable to the student’s supervisor(s) and two additional faculty readers. Any of the readers may request that the student complete an oral examination.
    • The topic and scope of a thesis are arranged by the student and their supervisor. A MASc thesis should define a substantial research problem, provide a comprehensive review of the literature in the research problem area, describe the theoretical, analytical and/or experimental solution, and provide a comprehensive set of conclusions and recommendations.
    • Each student must prepare a thesis in accordance with the current guidelines issued by the Graduate Studies Office and the Faculty of Engineering.
    • Thesis submission: The student must distribute copies of their thesis to the readers designated by the Chemical Engineering Department’s Associate Chair for Graduate Studies. The readers will include the supervisor(s) plus at least two other faculty members. They will acknowledge receipt of the thesis from the student by initialing a Department Certification of MASc Thesis Submission and Acceptance form. The student must also submit one copy of their completed MASc thesis, along with their initialed Department Certification of MASc Thesis Submission and Acceptance form, to the Engineering Graduate Studies Office. A representative of the office will confirm acceptance of the thesis by initialing the Department Certification of MASc Thesis Submission and Acceptance form and then email notice of the thesis deposit to the Chemical Engineering Department. The thesis will be put on display in the Engineering Graduate Studies Office, and therefore made available to members of the University community, for three weeks. Once the student’s Department Certification of MASc Thesis Submission and Acceptance form has been signed by a representative of the Engineering Graduate Studies Office, the student must return the form to the Chemical Engineering Department’s Graduate Coordinator.
    • Thesis evaluation: Within three weeks of their receipt of the thesis, each reader will return the thesis with their comments to the student and, upon acceptance of the thesis, sign the student’s Department Certification of MASc Thesis Submission and Acceptance form. The student will return this form to the Chemical Engineering Department’s Graduate Coordinator. Once the student’s supervisor is satisfied that the student has completed all of the changes requested by the readers, the supervisor will sign the form to indicate his/her acceptance. The Chemical Engineering Department’s Associate Chair of Graduate Studies will sign the form and forward it to the Engineering Graduate Studies Office. It will prepare a MASc Thesis Acceptance form and forward it to the student, the Chemical Engineering Department’s Graduate Studies Office and the University of Waterloo’s Graduate Studies office.
    • Restricted circulation of theses: Occasionally a research program may produce findings that warrant restrictions on the circulation of the thesis. This may result from constraints imposed by research sponsors or a belief that the work may produce patentable processes or devices. If the student and their supervisor(s) judge that some restrictions should be placed on a thesis, they should write to the Associate Chair for Graduate Studies as early as possible in the research program, describing the nature of and reasons for the restrictions. If the Associate Chair for Graduate Studies concurs, then the approval of the Associate Dean for Graduate Studies and Research of Engineering and the Associate Provost, Graduate Studies will be sought. The restriction is limited to one year, with a possible extension to a second year if an acceptable case can be made to the Associate Provost, Graduate Studies.
    • Critical times: If their thesis is accepted on or before the last day of the term, a student is not required to register for the following term. Therefore, to avoid paying regular registration fees, the student should submit their thesis at least four weeks before the registration day of the following term. If the thesis requires major revisions that extend completion beyond the registration deadline, the student must register and pay fees for the pending term. Refunds may be made available under certain circumstances.