ME 600s


ME 610 Analytical Methods in Vibrations (0.50) LECCourse ID: 010310
This course presents the principles relevant to understanding and modelling of vibrating systems. The systems may either be continuous, or discrete with multiple degrees of freedom. The following topics of a general nature are first covered: principles of dynamics, strain energy, virtual work, the variational principle, and Lagrange's equation. Discrete-system topics covered are eigenvalue problems, modal analysis, natural modes of vibration, solution of the characteristic determinant, and approximate methods of solution, (e.g., using finite element methods). Continuous-system topics covered are formulation of the boundary value problem, vibration of rods and membranes, Rayleigh's integral method, the Rayleigh-Ritz method, and Galerkin's method. The course work includes computer algebra, computer simulation, and experiments in the laboratory.

ME 620 Mechanics of Continua (0.50) LECCourse ID: 001852
Mathematical preliminaries; co-ordinate transformations, introduction to tensors, tensor fields and transformations, integral theorems, analysis of deformation; deformation tensors and rates of deformation tensors and their mechanical significance, convecting and rotating axes. Analysis of stress; definition of stresses and their physical significance, rates of stresses, objective stress rates. Constitutive equations for elasticity and plasticity (Prandtl-Reuss). Hardening laws and material rate sensitivity. Anisotrophy.

ME 621 Advanced Finite Element Methods (0.50) LEC,TUTCourse ID: 014596
The course covers principles of finite element method as applied to linear and non-linear problems. The course will start by reviewing fundamentals of finite element method including discretization, element formulation, assembling process, boundary conditions, solving system of equations, and post processing. The focus will then shift to non-linear FEM. A brief summary of variational calculus and the classical theory of plasticity will be followed by the theory of non-linear FEM including various numerical integration schemes. The course will also include use of software/programming with available codes/in-house codes in solving nonlinear problems.
Prereq: ME 620, 559

ME 627 Fatigue Analysis and Design (0.50) LECCourse ID: 011268
Advanced fatigue analysis including strain-based and stress-based approaches. Applications will include machine and welded components. Specific topics to include cyclic stress-strain behaviour, notch analysis, damage accumulations, multi-axial and variable amplitude loading. Probabilistic approaches and interpretation of finite element results will be addressed.

ME 628 Fracture Mechanics (0.50) LECCourse ID: 001855
Linear elastic, elastic-plastic and fully plastic approaches to the analysis of cracked components. Calculation and measurement of fracture mechanics parameters - Charpy, strain energy release rate, stress intensity factor, crack tip opening displacement and J-integral - will be covered, including correlations between the various parameters and limitations on their use. Applications will include the analysis of sub-critical crack growth (fatigue) and design procedures, especially the failure assessment diagram approach.

ME 631 Mechanical Metallurgy (0.50) LECCourse ID: 001858
Elastic, anelastic and plastic properties of single crystals and polycrystalline aggregates. Relationship between single crystal and polycrystalline deformation. Dislocation theory applied to deformation processes at high and low temperatures. Microscopic aspects of ductile and brittle fracture.

ME 632 Experimental Methods in Materials Engineering (0.50) LECCourse ID: 011466
This course will focus on techniques used to characterise materials including metals, ceramics, polymers and composites. Techniques will include scanning and transmission electron microscopy, x-ray and neutron diffraction, thermal analysis (DSC, DMA, TGA, dilactometry), and quantitative metallography. Some of the techniques covered in lectures will be used in laboratory exercises. These exercises will be used to demonstrate the practical use of the equipment and illustrate materials processing, microstructure and property relationships.

ME 645 Metallurgy and Plasticity in Metalworking (0.50) LECCourse ID: 001861
The interaction of material properties and process variables in plastic deformation processes. Phenomena of hot, warm and cold working. Thermo-mechanical processing. Flow stress and workability. Effects of hydrostatic pressure. Analysis of stress and strain state in forging, rolling, extrusion, drawing and sheet metalworking.

ME 648 Surface Modelling in Machining (0.50) LECCourse ID: 001862
This course presents the principles behind the mathematical representation of surfaces in ways that are suitable for computers, together with the application of such representations to computer-controlled machining processes. The Bezier, B-spline and NURBS representations are all covered, as are important surface properties, like curvature, shortest-distance algorithms, ray-intersection, surface sub-division, knot insertion, and degree elevation. Machining aspects covered are three-, four- and five-axis methods, anti-gouging methods and anti-interference checking.

ME 649 Control of Machines and Processes (0.50) LECCourse ID: 001863
The concepts of computer-aided manufacturing, microcomputer systems and interfacing techniques for industrial applications. Conversion techniques, timing considerations, thermal and optical sensing, interpolation methods for control of drive systems and programmable controllers are representative of the topics presented. Hardware and software design of real time microcomputer systems which are then implemented in the laboratory constitute a major portion of the course requirements.

ME 651 Heat Conduction (0.50) LECCourse ID: 001864
Steady and transient heat conduction in isotropic media. Review of fundamental principles of heat conduction and boundary conditions. Introduction to the concept of thermal resistance of systems and of thermal constriction resistance. Derivation of gradient, divergence, Laplacian, conduction equation, boundary conditions and thermal resistance in general orthogonal curvilinear co-ordinates. Solutions of conduction equations in several co-ordinate systems. Introduction to finite difference and finite element formulations of the conduction equation in curvilinear co-ordinates.

ME 652 Convective Heat Transfer (0.50) LECCourse ID: 001865
Derivation of the general energy equation. Parameters required for determination of heat transfer in laminar and turbulent flows. Fully numerical solutions, exact solutions, and approximate solutions for internal and external flows. Problems involving frictional heating, property variations and mass injection at the wall will be considered. If interest is indicated, special topics such as heat transfer by boiling, condensation and evaporation will be discussed.

ME 653 Radiation Heat Transfer (0.50) LECCourse ID: 001866
Blackbody radiation; properties of surfaces; heat exchange between black, isothermal surfaces; heat exchange in an enclosure composed of diffuse-gray surfaces; radiation in the presence of other modes of heat transfer; radiation in absorbing-emitting media; heat exchange in enclosures containing absorbing-emitting gases; flames, luminous flames and particle radiation.

ME 662 Advanced Fluid Mechanics (0.50) LECCourse ID: 001868
Cartesian tensor forms of basic equations; vorticity; Reynolds number effects; ideal, irrotational flow, some exact viscous solutions. Selection of topics from: boundary layer theory with heat and mass transfer; slow viscous flows and lubrication; hydrodynamic stability of laminar flows; special topics.

ME 663 Computational Fluid Dynamics (0.50) LECCourse ID: 010455
This course presents the concepts and details required to develop computer codes for the simulation of complex multidimensional fluid flows. The following topics will be covered: the finite volume discretization method, discretization schemes for diffusive fluxes, iterative solution algorithms, multigrid acceleration techniques, first and second order bounded discretization schemes for advective fluxes, special treatments for the coupled momentum and mass conservation equations, pressure redistribution techniques, velocity-pressure solution techniques, and extensions to multi-dimensions. Enrichment topics will be chosen from the following research areas: grid generation, turbulence modelling, and emerging discretization and solution algorithm technologies.

ME 664 Turbulent Flow (0.50) LECCourse ID: 001869
Stochastic concepts, averages, correlation coefficients, auto-correlation functions, spectra. Space and time scales of turbulent fluctuations, energy dissipation in turbulence. Correlation and spectral tensors in three dimensions, isotropic forms. Equations of motion, spectral equation for isotropic turbulence. Universal equilibrium theory, the Kolmogoroff spectrum. Turbulence transport modelling for engineering calculation of turbulent shear flows.

ME 670 Atmospheric Dynamics (0.50) LECCourse ID: 001870
Hydrodynamic equations of motion on a rotating axis. Geostropic balance in the atmosphere and oceans, vertical variation of wind and pressure fields in the atmosphere, mechanisms of pressure change, vorticity equation.

ME 700s


ME 705 Special Topics in Tribology (0.50) LECCourse ID: 001873
Various courses dealing with selected aspects of friction, lubrication and wear, including contact phenomena, lubricant behaviour under concentrated contact conditions, and lubrication in special environments. Subject to approval of instructor.
Instructor Consent Required
1 Spinal Arthroplasty Project 1
2 Spinal Arthroplasty Project 2

ME 706 Advanced Tribology (0.50) LECCourse ID: 001874
Mechanical engineering aspects of tribology are emphasized. Topics include the fundamentals of fluid film lubrication and contact mechanics. These fundamentals are applied to model friction, surface temperatures, boundary lubrication, mixed film lubrication, elastohydrodynamic lubrication and wear. Specific applications may be presented, if time permits. ME 423 is a recommended but not an essential prerequisite.

ME 707 Machinery Noise and Vibration Analysis (0.50) LECCourse ID: 010456
Deterministic and random signal analysis. Digital spectral analysis. Data analysis. Further aspects of theoretical acoustics, spherical wave propagation, effects of attenuation due to damping. Applications of the fast Fourier transform. Structural acoustic coupling. Statistical analyses applied to signal processing. Gear and bearing noise. Impacting noise from machinery. Machinery health monitoring system. System identification of potential equipment breakdown.

ME 709 Control Engineering and Mechanical Systems (0.50) LECCourse ID: 001875
This course is aimed at applications of control to Mechanical Systems. Course contents: Review of Control; Poles and zeros, Transfer functions, Time Reponse, Actuators, Electrical Systems, PID Control, designing controllers with root locus, state space representations, phase planes, stability concepts, frequency Response. Applications to Mechanical systems: Robots, Hydraulic systems, Active Vibration Control.

ME 710 Special Topics in Control Systems (0.50) LECCourse ID: 001876
1 Engineering Optimization

ME 711 Non-Linear Vibrations (0.50) LECCourse ID: 001877
Review of linear systems; free and forced vibrations; conservation systems; general autonomous systems; equilibrium and periodic solutions, linearization and Lyapunov stability criteria; Poincare-Bendixon theorem; quantitative analysis of weakly nonlinear systems in free and forced vibrations using perturbation methods; bifurcations and chaos in dynamical systems. This course will use computer programs (such as MAPLE and MATLAB) for simulation and analysis.

ME 720 Special Topics in Solid Mechanics (0.50) LECCourse ID: 012233

ME 722 Topics in Pressure Vessel Design (0.50) LECCourse ID: 001879
Design and analysis of pressure vessels, safety considerations and interpretation of pressure vessel codes. Fatigue and fracture modes of failure. Intersecting vessels and connections. Computer techniques of analysis.

ME 725 Special Topics in Advanced Stress Analysis (0.50) LECCourse ID: 001883
Various courses dealing with advanced topics in stress analysis such as finite element and other computational techniques, variational approaches, continuum mechanics, plasticity, contact and dynamic stresses. Subject to approval of instructor.
Instructor Consent Required

ME 729 Special Topics in Advanced Machine Design Methods (0.50) LECCourse ID: 010457
Various courses concerned with advanced topics and methods in machine design, such as reliability, life-cycle design, computer-aided design, and kinematic synthesis. Subject to approval of instructor.
Instructor Consent Required

ME 731 Corrosion and Oxidation (0.50) LECCourse ID: 001888
Electrochemical reactions and equilibria in ionic systems. Electrode kinetics and rates of corrosion. Modes of corrosive attack including stress corrosion cracking and hydrogen embrittlement. Corrosion prevention through materials selection, design, cathodic and anodic protection and coatings. Mechanisms and kinetics of high temperature oxidation. Selection of high temperature materials for maximum service lives. Discussion of technologically important material-environment combinations.
1 Corrosion of Steel in Concrete

ME 732 Thermodynamics and Phase Transformations (0.50) LECCourse ID: 011465
Atomistic and thermodynamic interpretation of the fundamental properties of solids. Diffusion, solidification, solid-state transformations (civilian and military), surface behaviour, phase equilibria, oxidation, corrosion.

ME 734 Composite Materials (0.50) LECCourse ID: 001889
Fibrous, lamellar and particle reinforced composites. The effect of combinations of brittle and ductile phases on the mode of deformation of an aggregate. The reinforcing mechanism of continuous and discontinuous fibres. Fracture and energy absorbing characteristics of composite materials.

ME 735 Special Topics - Welding and Joining (0.50) LECCourse ID: 001890
Discussion of selected current topics in materials science and engineering.

ME 736 Topics in Mechanical Metallurgy (0.50) RDGCourse ID: 001891

ME 737 Microstructural Engineering Topics (0.50) LECCourse ID: 001892

ME 738 Special Topics in Materials (0.50) LECCourse ID: 001893

ME 739 Manufacturing Processes Topics (0.50) LECCourse ID: 001894

ME 741 Design of Intelligent Systems: Mechatronics (0.50) LECCourse ID: 010458
Review of modelling and approximation of dynamic systems. Review of classical control theory. Electronic realisation of control elements and compensations: ideal and real PID. Elements of digital control theory: sampling theorem, z-transform and digital filters. Review of computer interfacing, power amplifiers, sequential logic, encoders, and motor control. The course involves practical projects and significant laboratory usage.

ME 742 Modelling and Control of Dynamic Systems (0.50) LECCourse ID: 001895
Review of classical system modelling. Introducing bondgraphs as a unified approach in modelling of mechanical, electrical, thermal, and fluid dynamic systems. Application of bondgraphs to multibody dynamics. State space representation and response of linear systems. Review of classical linear control theory. Introduction to modern control theory and study system characteristics: controllability, observability and stability.

ME 743 Modal Analysis and Modelling (0.50) LECCourse ID: 001896
Computer-aided engineering complements CAD/CAM by helping the engineer design not only individual components, but also design and analyse total systems. This course deals with the area of advanced vibration analysis and modelling using a combination of data acquisition and software analysis methods. This modal analysis approach to design uses several software packages. Topics discussed are the theory of modal analysis, parameter estimation and error assessment, computer modelling of structures, practical aspects of good data collection and manipulation. The course involves significant laboratory usage.

ME 745 Quality Assurance and Reliability in Manufacturing (0.50) LECCourse ID: 001898
Building quality in manufacturing processes and products through statistical design of experiments. Reliability engineering and the association with quality. Reliability models of systems. Maintainability, and fault free analysis.

ME 747 Topics in Manufacturing (0.50) RDGCourse ID: 001901
Various courses dealing with recent advances in manufacturing systems.

ME 748 Topics in Surface Modelling (0.50) LECCourse ID: 001902
2 Vehicle Suspension Parameters
3 Modelling of Celtic Patterns
4 Surface Design and Machining
5 Adv Num Controlled Mach Tools
6 Advanced Computer Design

ME 749 Special Topics in Machining (0.50) LECCourse ID: 001903

ME 750 Advanced Engineering Thermodynamics (0.50) LECCourse ID: 010459
The assumption of local equilibrium in continuous systems; entropy production; the properties of real gases and their equations of state; statistical thermodynamics and the calculation of perfect gas properties; introduction to Second-Law Analysis; the principle of entropy maximization and the Janes-Tribus formalism.

ME 751 Fuel Cell Technology (0.50) LECCourse ID: 010460
Introduction to the principle and operation of various types of fuel cells (such as alkaline, proton exchange membrane, phosphoric acid, molten carbonate, solid oxide, and direct methanol fuel cells). Configuration of individual cell, stack and fuel cell system. Overview of fuel cell technology. Thermodynamics of fuel cells. Introduction to electrochemical kinetics. Transport-related phenomena and conservation equations for reacting multi-component systems. Fuel cell system design, optimization and economics. Fuel cell performance modelling. Challenges of fuel cell commercialization.
1 Fuel Cell Technology

ME 753 Solar Energy (0.50) LECCourse ID: 001904
Terrestrial and extra-terrestrial solar radiation; radiative and optical properties of materials; basic and advanced flat plate solar thermal converters, focussing converters, solar-electric converters, solar photovoltaic cells, thermal storage; applications to building heating and cooling systems, industrial heat and central electric plants.

ME 755 Advanced Differential Equations and Special Functions (0.50) LECCourse ID: 001906
General linear second order ordinary differential equations. Hypergeometric functions, confluent hypergeometric functions. Legendre and Bessel functions. Orthogonality, generating functions, asymptotic expansions, integral relations. Hermite, Legendre, Laquerre and other orthogonal polynomials. Advanced Fourier series; Laplace, Fourier and other integral transforms. Problems from several areas of engineering.

ME 756 Combustion 2 (0.50) LECCourse ID: 009374
The equations of flowing, reacting mixtures; estimation of transport properties; elements of heat transfer from flames: radiation and convection; applied chemical kinetics of combustion: effects of pressure, temperature and surfaces; explosions; kinetics of pollutant formation in flames: flame inhibition chemistry; coupled processes: ignition, flame spreading, staged reactions; diffusion flames: flame aerodynamics with turbulence, buoyancy, and swirl; furnace and burner combustion: sprays, jets, stability, noice; mass fires; behaviour, properties.

ME 758 Thermal Contact Resistance (0.50) LEC,RDGCourse ID: 001907
Theory and application of thermal contact resistance. Parameters influencing contact resistance. Metrology of machined surfaces and their geometric interaction. Mechanical interaction of machined surfaces. Review of elasticity and plasticity theories. Discussion of modified Hertzian theory, including the effect of surface roughness. Thermal constriction resistance theories of circular, rectangular, elliptic, linear strip and annular strip contact areas. Theory of heat flux tubes. Superposition of microscopic and macroscopic resistance. Contacts in vacuum. Effect of interstitial fluids. Effect of metallic and non-metallic substances. Application of theory to industrial problems and well-defined systems such as bearings and powder substances.

ME 759 Advanced Experimental Methods in Thermal and Fluids Engineering (0.50) LECCourse ID: 001908
Design of experiments, error analysis, thermometry, flow visualization, anemometry, barometry, gas chromatography, radiation spectroscopy, mass spectroscopy, photography and thermal radiation flux measurement. Application of these methods to measurements in reacting and non-reacting fluids.

ME 760 Special Topics in Thermal Engineering: Air Pollution and Greenhouse Gases (0.50) LEC,TUTCourse ID: 001909
Antireq: ME 571
Also offered Online

ME 761 Fluid Dynamic Design of Turbomachines (0.50) LECCourse ID: 001910
Basic equations in stationary and rotating coordinate systems, forms suitable for axial flow and centrifugal flow machinery. Analysis and experimental characteristics of two-dimensional cascades, analysis of circular cascades. Effects of turbulence. Axisymmetric and general three-dimensional flows in diffusers, inlets, volutes and blade passages.

ME 762 Turbulent Diffusion in the Natural Environment (0.50) LECCourse ID: 001911
Statistical quantities of interest in turbulent diffusion; Eulerian and Lagrangian probability distributions, averages, correlations, spectra. Specific prediction models for atmospheric and oceanic mixing processes, diffusion in a homogeneous field in a boundary layer. Effects of density stratification, buoyant movements.

ME 765 Special Topics in Fluid Mechanics (0.50) LECCourse ID: 012234
Also offered Online

ME 770 Special Topics in Numerical Methods, Fluid Flow and Heat Transfer (0.50) LECCourse ID: 001912
Various courses dealing with numerical methods of predicting the fluid flow, heat transfer and chemical reaction in engineering equipment, in the human body, and in the environment. The methods usually involve the solution of partial differential equations of the parabolic, elliptic and hyperbolic type.
Also offered Online

ME 780 Special Topics in Mechatronics (0.50) LEC,RDGCourse ID: 001915
25 Neural & Rehabilitation Eng.